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REPORT NO. 210

I.NERTIA FACTORS OF ELLIPSOIDS FOR USE

By L. B. TUCKERMAN

IN AIRSHIP DESIGN

,

This report is b~ed on a stud-ymade by the writer as a member of the Special Cofittee
on D wiign ;f Army Semirigid &r&ip RS-i appointed by the NationaI Advisory Committee
for Aeronautics.

The increasing interest in airships has made the problem of the”potential flow of a fluid
about an ellipsoid of considerable practicaI importance. In 1833 Green,l in discu=ing tie
effect of the surrounding medium upon the period of a pendulum, derived three elliptic inte-
grals, in terms of which practically all the characteristics of this type of motion can be expressed.
The theory of this type of motion is very fully given by Lamb? and applications to the theory
of airships by many Writers.n Tabke of the inertia coefficients derived from these integrals are
avaiIable for the most important special cases.46 These tables are adequate for most purposes,
but occasionally it is desirabIe to know the vaIues of these integrals in other cases where tabu-
lated vaIues are not available. For this reason it seemed worth while to assemble a collection
of formuke which would enable them to be computed directly from standard tables of eIliptic
integraLs, circular and hyperbolic functions, and logarithms without the need of intermediate
transformations. Some of the fornmke for special cases (elliptic cylinder, prolate spheroid,
oblate spheroid, etc.) have been published before, but the general forms and some special cases
have not been found in previous pubhcations.

The additional inertia of the translational potential flow of a fluid about trkial ellipsoid
is proportional to the three cofi~ents

Here 4; abc is the volume of the ellipsoid and

The additional
three coefEcient9

7c,=— 60 g,=~
2 ~q’k, =—

2–&J ,9-70

moment of inertia of the rotational potential

.
,

flow is proportiomd to the

Here ii’,, 7/,, and 7/, are given as factors of the corresponding moments of inertia
soid its~ =d

()
~,1= ~’–c= ‘ 7-0– Po

P+c’
b=– (% –90)~ &+cz

\
with symmetrical expressions for k’2 and k’3.
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I Gorge @een:“IWeeercheeontbe vibratfonofpendrdurneLnfhddrnedfe?’ Trene.R. S.Ed. 1S33.
: H- Led: “HYdrOdYmldCS” (4thA. Cerrrb.1916),pp. 132-147.
zSe&for=IUXIPI%Mes M. Jfnnk “The aerodmmfa fcmesonefrshlphulk” K. A. C!.L, ReportXo.lSL1924.
*HcmeeLemb:“The fnertfecoefliefentsofan ellf~d movingfnfluid.” G. B. A. C. A. R. &M. No.623,191S.
JH. Batemen:“The Inertfacoefticfenbeofen elrehlpIDa M&odes fluid.” N. A. C. A.,ReportNo.K4,1GZ3.
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In the above formulre ~, f?,, and ~, are the speeial values for X=0 of Green’s integrsk

To transform these intsgrale into the standard Legendre form substitute

This gives

and

Then

Here

and

.-

dh~“-bdu
,9U3C “sa=- o

sn’u du=a $ [u –E(u)]

.t?u7)c

s
“ ‘n’udu= ‘dc [1 ‘nu‘*U–E(u)‘-- o ~. -~ Cnu 1

snu dnu
4( 4(

.-
(aa–@ (V +~) snu i~u= (a’ -d) (d +X)

mu “ a’+~) (&+X)’ ~ a:+h) (7P+k)

d
.T - -. --—

u = sn+
a~–@

d

a2_$
~=F (q; k) where q=sin-S ~A

The values of u= F(P; k) and E(u) =-E (P;”k) can be” obtiined directly
of elliptic integrals.

from standard talks

No!rE.-The notation of ellfptio integrals is not standardized. Some authors write the elliptio integral of
the seoond kind as a function of the amplitude q. %me write the argument first and the modulus or modular
angle second; some reverse the order, and some use one form at one time and another at another. Thus we may
find the following forms:

usF(p; k)s F(k; q)sF(p; @)~F(e; q)

The more usual tables tabulate the funotione aooording to the amplitude P and the modular angIe 8 so that

us F (p;e) E (u)SE (p;8)
where

‘=sin-’m’ ‘=s~:=

. .

—

However, the latest, and for some purposes the most convenient, tablw by R. L. Hippisley 6 tabulate u= Fq=

F (P;8) and E (u)=E (r)+el? acaording to r, where @=9(Pe=90Q ~.
—.

ISdtiawdnn MathematicalFornmlm(1828),PP.2$%X9.
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When h=O the formuke simplify to

2a7)c
%=@_ p) @_&)lp [%-~(%)1

MC (a’ –d)’~
PO=(~a–~2) (~a– Cz)[

(a’ –P) c
E(wo)–g 3.0- d(a2_&)1d

Eere

Yo=w ‘–&b E(uo)

()

C%
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where el and ez are the eccentricities of the central sections normal to the intermediate (b) and
minimum (c) axes of the elhpsoid.

These formuhe are sufficient for the direct evaluation of k,, k,, k8; “k’l, k’,, and k’, in the
general case. However, in special cases the elliptic integrak degenerate into algebraic, circular,
hyperbolic, or other functions, or the coefficients take on indeterminate forms needing special
treatment. The results for many of these special cases are more readily obtained by direct
integration of the special differential forms, but for uniformity are discussed here as limiting
forms of the general elliptic integrals.

1. VERY LONGELLIPSOID.fi”miting case an eIIiptic cylinder. As a becomes large so that

higher powers of both ~ and ~ become negligible kA 1 and at the same time p@A~.

These are of course more directly obtained by treating the two dimensional flow around an
elliptic cylinder.7

2. EL~C DISK. c +0. To quantitk of the ilrst order in c

%= Z&F)~%o–baE‘“O)]

Po=b (a?_&)[a’E (uJ –WUJ

In the limitc=O, qo=~,so that U.= K and E (uJ = E, the complete elliptic integrals,

mod W=,.
a

.

—
--

Then in the limit %=190=0, 7.=2, so that kl=k~=O, but 28= co.
Thus KI= ~ =0 and KSneeds special evahmtion:

A .4+C
l–; E(tio)

l@+bc ii,=$zbc2_70
~ E (Uo)

rHoraceLamb,I.G PP.79-S6.
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In the limit c =0

K,=$ ‘$s mod k=-~. e.
a

when cz=b (circular plate) k=e=O, E=;J so that K8A~ as.

~~ain to quantities of the firstio-iderin c .-.

AERONAUTICS

.-
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9’0– &
“l=,%?–(70–/30)

.-., ,L . . . . . .— . . . . . J .. . -. . >. -—. ..”--

I!’ = 7’0-%
2 ~] “—”””” ““’ “’”

.s ---- . . . . . . .. .

In the limit c=O, 7/,= O,but 7C’Iand 7c’,become infinite as ~. To this order of approx i-

mation.

2– (~o– PJ =2 ~~- [(2’a’-5a) E (uJ – b%J

z–(~o–ao)=~ & [(a’ –W) E (Uo)+ b%,]

SOthatwhen c=O

=, ~.&r (zW(d – w)
2 fi[(a’-f %’) E+VKI

When a~b (circular disk), these become indeterminate,

1-

.-

quantitiee of the first order in (a’– fia), (K– E)=; ~t so that K’l= li?,=~an.
..@

3. OBLATE SPHEROID. a=h>c,k=o,kf=l. “

da2_@

E (u) =u=p=sin–~ ~h=sin-l % .- .

d
1 +;

and Lim~ [u–E (u)]= I/2 (q–sin ~ cos ~) ‘

ii~o

then

When A=O, P=sin+ e, so that
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In the limiting case c =0, e= 1 (ciroular ~late) these give as before

~. PROLATE SPEEEOrD. a>b=c, k=l, k’=0, p=gdu. Then

where

raz–~ etanhu=sin y= a== a.+ I– e’

d
7’ -@=~‘1+2

1-

and

d ()l+s~ P=log tan ~+~
u,= log i–slnffY

when x= O, these reduce to
J1-e’)

[
I* $e

— logl_e–
es 1

~=7 U-ez).—
[

—–1/#9 log*
e3 . I:ez 1
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The special cases 3 and 4 are of oourse more readily obtained by direct integration.

.


